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Question 1 

In the island of knights and knaves created by Smullyan, where knights always tell the truth 

and knaves always lie, you encounter two people, A and B. Determine what A and B are if: 

A says: I am a knave or B is a knight 

B says: Nothing 

Key Solution: 

Based on what A said, Let: 

𝑝: “I am a knave” ≡ “A is a knave” 

𝑞: “B is a knight” 

Then we can rewrite the claims as: 

A says: 𝑝 ∨ 𝑞 

B says: Nothing 

Assume A is a knave, then 𝑝 ∨ 𝑞 ≡ 𝐹𝑎𝑙𝑠𝑒, which can only be when both p and q are False. 

If p is false, then this means that A is a knight, which contradicts with our assumption that A 

is a knave. This means that A cannot be a knave. Thus A is a knight. 

Now that A is a knight, this means that 𝑝 ∨ 𝑞 ≡ 𝑇𝑟𝑢𝑒, which means that for the statement to 

be true either p is true or q is true. Since A is a knight, then p is false. Then q must be true. 

That is, B is a knight 

Therefore A is a knight and B is a knight. 

 

Question 2 

 

Show, without using the truth table, that (𝑝 → 𝑟) ∨ (𝑞 → 𝑟) and (𝑝 ∧ 𝑟) → 𝑟 are logically 

equivalent. 

Key Solution: 

We need to prove that (𝑝 → 𝑟) ∨ (𝑞 → 𝑟) ≡ (𝑝 ∧ 𝑞) → 𝑟 

𝐿𝐻𝑆 ≡ (𝑝 → 𝑟) ∨ (𝑞 → 𝑟)   Apply 𝑝 → 𝑞 ≡ ¬𝑝 ∨ 𝑞 and we get 

≡ (¬𝑝 ∨ 𝑟) ∨ (¬𝑞 ∨ 𝑟)   Series of disjunctions, we remove the brackets 



≡ ¬𝑝 ∨ 𝑟 ∨ ¬𝑞 ∨ 𝑟    Using the commutative law we get 

≡ ¬𝑝 ∨ ¬𝑞 ∨ 𝑟 ∨ 𝑟    Apply the Idempotent law on r and we get 

≡ ¬𝑝 ∨ ¬𝑞 ∨ 𝑟    Apply De Morgan law and we get 

≡ ¬(𝑝 ∧ 𝑞) ∨ 𝑟    Apply 𝑝 → 𝑞 ≡ ¬𝑝 ∨ 𝑞 and we get 

≡ (𝑝 ∧ 𝑞) → 𝑟 ≡ 𝑅𝐻𝑆  

Question 3 

 

a) Find a common domain for the variables 𝑥, 𝑦, 𝑧, and 𝑤 for which the statement 

∀𝑥∀𝑦∀𝑧∃𝑤((𝑤 ≠ 𝑥) ∧ (𝑤 ≠ 𝑦) ∧ (𝑤 ≠ 𝑧)) is true and another common domain 

for these variables for which it is false. 

b) Identify the error or errors in this argument that supposedly shows that if ∃𝑥𝑃(𝑥) ∧

∃𝑥𝑄(𝑥) is true then ∃𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) is true: 

1. ∃𝑥𝑃(𝑥) ∧ ∃𝑥𝑄(𝑥) Premise 

2. ∃𝑥𝑃(𝑥)  Simplification from (1) 

3. 𝑃(𝑐)   Existential instantiation from (2) 

4. ∃𝑥𝑄(𝑥)  Simplification from (1) 

5. 𝑄(𝑐)   Existential instantiation from (4) 

6. 𝑃(𝑐) ∧ 𝑄(𝑐)  Conjunction from (3) and (5) 

7. ∃𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) Existential generalization 

Key Solution: 

a) Any domain with four or more members makes the statement true; 

Any domain with three or fewer members make the statement false. 

b) The error occurs in step (5), because we cannot assume, as is being done here, that the 

𝑐 that makes 𝑃 true is the same as the 𝑐 that makes 𝑄 true. 

 

Question 4 



 

Use rules of inference to show that if ∀𝑥(𝑃(𝑥) → (𝑄(𝑥) ∧ 𝑆(𝑥)) and ∀𝑥(𝑃(𝑥) ∧ 𝑅(𝑥)) are 

true, then ∀𝑥(𝑅(𝑥) ∧ 𝑆(𝑥)) is true. 

Key Solution 

 

Question 5 

You know that in proof by contradiction we prove that 𝑝 is true by showing that ¬𝑝 → (𝑟 ∧

¬𝑟). Prove that √2 is irrational by using the proof by contradiction strategy. In your proof, 

you must indicate which statements constitutes 𝑝, ¬𝑝, 𝑟 and ¬𝑟 and then clearly indicate how 

you reached the contradiction (𝑟 ∧ ¬𝑟). 

Key Solution 



 

 

Question 6 

 

Suppose that 𝑎 and 𝑏 are odd integers with 𝑎 ≠ 𝑏. Show that there is a unique integer 𝑐 such 

that |𝑎 − 𝑐| = |𝑏 − 𝑐| 

 

Key Solution 

The equation |𝑎 − 𝑐| = |𝑏 − 𝑐| is equivalent to the disjunction of two equations: 

 [𝑎 − 𝑐 = 𝑏 − 𝑐]  ∨ [𝑎 − 𝑐 = −𝑏 + 𝑐] 

The first of these is equivalent to 



𝑎 − 𝑐 = 𝑏 − 𝑐 

𝑎 = 𝑏 

which contradicts the assumption made in this problem. So the original equation is equivalent 

to 

𝑎 − 𝑐 =  −𝑏 + 𝑐 

𝑐 =
𝑎 + 𝑏

2
 

Thus there is a unique solution. Furthermore, this 𝑐 is an integer, because sum of the odd 

integers 𝑎 and 𝑏 is even. 

 

 

 


