# King Fahd University of Petroleum and Minerals College of Computer Science and Engineering



## ICS 253 Section 01

### Major Exam 1

13 October 2015

Student Name:

Student ID:

| Learning<br>Objective | Question | Total<br>Marks | Acquired<br>Marks | Notes |
|-----------------------|----------|----------------|-------------------|-------|
| 1                     | 1        | 10             |                   |       |
| 1&2                   | 2        | 10             |                   |       |
| 1                     | 3        | 10             |                   |       |
| 1&2                   | 4        | 10             |                   |       |
| 2                     | 5        | 10             |                   |       |
| 2                     | 6        | 10             |                   |       |
|                       | Total    | 60             |                   |       |

Notes:

- 1) Write your Student ID on the top of each paper sheet.
- 2) This exam contains six different paper sheets **<u>excluding</u>** this cover page.
- 3) Answer all questions in this exam.
- 4) Exam duration is 60 minutes.

#### Question 1

In the island of knights and knaves created by Smullyan, where knights always tell the truth and knaves always lie, you encounter two people, *A* and *B*. Determine what *A* and *B* are if:

A says: I am a knave or B is a knight

*B* says: Nothing

Key Solution:

Based on what A said, Let:

*p*: "I am a knave"  $\equiv$  "*A* is a knave"

q: "B is a knight"

Then we can rewrite the claims as:

A says:  $p \lor q$ 

*B* says: Nothing

Assume *A* is a knave, then  $p \lor q \equiv False$ , which can only be when both *p* and *q* are *False*.

If p is false, then this means that A is a knight, which contradicts with our assumption that A is a knave. This means that A cannot be a knave. Thus A is a knight.

Now that *A* is a knight, this means that  $p \lor q \equiv True$ , which means that for the statement to be true either *p* is true or *q* is true. Since *A* is a knight, then *p* is false. Then *q* must be true. That is, *B* is a knight

Therefore A is a knight and B is a knight.

Question 2

**25.** Show that  $(p \to r) \lor (q \to r)$  and  $(p \land q) \to r$  are log-ically equivalent.

Show, without using the truth table, that  $(p \rightarrow r) \lor (q \rightarrow r)$  and  $(p \land r) \rightarrow r$  are logically equivalent.

Key Solution:

We need to prove that  $(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$ 

| $LHS \equiv (p \to r) \lor (q \to r)$         | Apply $p \to q \equiv \neg p \lor q$ and we get |
|-----------------------------------------------|-------------------------------------------------|
| $\equiv (\neg p \lor r) \lor (\neg q \lor r)$ | Series of disjunctions, we remove the brackets  |

 $\equiv \neg p \lor r \lor \neg q \lor r$ Using the commutative law we get $\equiv \neg p \lor \neg q \lor r \lor r$ Apply the Idempotent law on r and we get $\equiv \neg p \lor \neg q \lor r$ Apply De Morgan law and we get $\equiv \neg (p \land q) \lor r$ Apply  $p \rightarrow q \equiv \neg p \lor q$  and we get $\equiv (p \land q) \rightarrow r \equiv RHS$ 

Find a common domain for the variables x, y, z, and w for which the statement  $\forall x \forall y \forall z \exists w ((w \neq x) \land (w \neq y) \land (w \neq z))$  is true and another common domain for these variables for which it is false.

- a) Find a common domain for the variables x, y, z, and w for which the statement  $\forall x \forall y \forall z \exists w ((w \neq x) \land (w \neq y) \land (w \neq z))$  is true **and another** common domain for these variables for which it is false.
- b) Identify the error or errors in this argument that supposedly shows that if  $\exists x P(x) \land \exists x Q(x)$  is true then  $\exists x (P(x) \land Q(x))$  is true:

| • • | , (()                                 |                                    |
|-----|---------------------------------------|------------------------------------|
| 1.  | $\exists x P(x) \land \exists x Q(x)$ | Premise                            |
| 2.  | $\exists x P(x)$                      | Simplification from (1)            |
| 3.  | P(c)                                  | Existential instantiation from (2) |
| 4.  | $\exists x Q(x)$                      | Simplification from (1)            |
| 5.  | Q(c)                                  | Existential instantiation from (4) |
| 6.  | $P(c) \wedge Q(c)$                    | Conjunction from (3) and (5)       |
| 7.  | $\exists x (P(x) \land Q(x))$         | Existential generalization         |
|     |                                       |                                    |

#### Key Solution:

- a) Any domain with four or more members makes the statement true; Any domain with three or fewer members make the statement false.
- b) The error occurs in step (5), because we cannot assume, as is being done here, that the *c* that makes *P* true is the same as the *c* that makes *Q* true.

# 23. Identify the error or errors in this argument that supposedly shows that if $\exists x P(x) \land \exists x Q(x)$ is true then $\exists x(P(x) \land Q(x))$ is true.

| 1. $\exists x P(x) \lor \exists x Q(x)$ | Premise                            |
|-----------------------------------------|------------------------------------|
| 2. $\exists x P(x)$                     | Simplification from (1)            |
| 3. $P(c)$                               | Existential instantiation from (2) |
| 4. $\exists x Q(x)$                     | Simplification from (1)            |
| 5. $Q(c)$                               | Existential instantiation from (4) |
| 6. $P(c) \wedge Q(c)$                   | Conjunction from (3) and (5)       |
| 7. $\exists x (P(x) \land Q(x))$        | Existential generalization         |

Question 4

27. Use rules of inference to show that if  $\forall x(P(x) \rightarrow (Q(x) \land S(x)))$  and  $\forall x(P(x) \land R(x))$  are true, then  $\forall x(R(x) \land S(x))$  is true.

Use rules of inference to show that if  $\forall x (P(x) \rightarrow (Q(x) \land S(x)) \text{ and } \forall x (P(x) \land R(x)) \text{ are true, then } \forall x (R(x) \land S(x)) \text{ is true.}$ 

Key Solution

| 27. Step                                           | Reason                                     |
|----------------------------------------------------|--------------------------------------------|
| 1. $\forall x (P(x) \land R(x))$                   | Premise                                    |
| 2. $P(a) \wedge R(a)$                              | Universal instantiation from (1)           |
| 3. $P(a)$                                          | Simplification from (2)                    |
| 4. $\forall x (P(x) \rightarrow Q(x) \land S(x)))$ | Premise                                    |
| 5. $Q(a) \wedge S(a)$                              | Universal modus ponens from (3)<br>and (4) |
| 6. $S(a)$                                          | Simplification from (5)                    |
| 7. $R(a)$                                          | Simplification from (2)                    |
| 8. $R(a) \wedge S(a)$                              | Conjunction from (7) and (6)               |
| 9. $\forall x (R(x) \land S(x))$                   | Universal generalization from (5)          |

Question 5

You know that in proof by contradiction we prove that p is true by showing that  $\neg p \rightarrow (r \land \neg r)$ . Prove that  $\sqrt{2}$  is irrational by using the proof by contradiction strategy. In your proof, you must indicate which statements constitutes  $p, \neg p, r$  and  $\neg r$  and then clearly indicate how you reached the contradiction  $(r \land \neg r)$ .

Key Solution

Solution: Let p be the proposition " $\sqrt{2}$  is irrational." To start a proof by contradiction, we suppose that  $\neg p$  is true. Note that  $\neg p$  is the statement "It is not the case that  $\sqrt{2}$  is irrational," which says that  $\sqrt{2}$  is rational. We will show that assuming that  $\neg p$  is true leads to a contradiction.

If  $\sqrt{2}$  is rational, there exist integers a and b with  $\sqrt{2} = a/b$ , where  $b \neq 0$  and a and b have no common factors (so that the fraction a/b is in lowest terms.) (Here, we are using the fact that every rational number can be written in lowest terms.) Because  $\sqrt{2} = a/b$ , when both sides of this equation are squared, it follows that

$$2 = \frac{a^2}{b^2}.$$

Hence,

$$2b^2 = a^2.$$

By the definition of an even integer it follows that  $a^2$  is even. We next use the fact that if  $a^2$  is even, a must also be even, which follows by Exercise 16. Furthermore, because a is even, by the definition of an even integer, a = 2c for some integer c. Thus,

$$2b^2 = 4c^2$$

Dividing both sides of this equation by 2 gives

$$b^2 = 2c^2$$
.

By the definition of even, this means that  $b^2$  is even. Again using the fact that if the square of an integer is even, then the integer itself must be even, we conclude that b must be even as well.

We have now shown that the assumption of  $\neg p$  leads to the equation  $\sqrt{2} = a/b$ , where a and b have no common factors, but both a and b are even, that is, 2 divides both a and b. Note that the statement that  $\sqrt{2} = a/b$ , where a and b have no common factors, means, in particular, that 2 does not divide both a and b. Because our assumption of  $\neg p$  leads to the contradiction that 2 divides both a and b and 2 does not divide both a and b,  $\neg p$  must be false. That is, the statement p, " $\sqrt{2}$  is irrational," is true. We have proved that  $\sqrt{2}$  is irrational.

#### Question 6

# 17. Suppose that a and b are odd integers with $a \neq b$ . Show there is a unique integer c such that |a - c| = |b - c|.

Suppose that *a* and *b* are odd integers with  $a \neq b$ . Show that there is a unique integer *c* such that |a - c| = |b - c|

#### Key Solution

The equation |a - c| = |b - c| is equivalent to the disjunction of two equations:

•  $[a - c = b - c] \lor [a - c = -b + c]$ 

The first of these is equivalent to

$$a - c = b - c$$
$$a = b$$

which contradicts the assumption made in this problem. So the original equation is equivalent to

$$a - c = -b + c$$
$$c = \frac{a + b}{2}$$

Thus there is a unique solution. Furthermore, this c is an integer, because sum of the odd integers a and b is even.